Investigating the Effectiveness of Supplemental Instruction on Student Performance and STEM Retention

Ryan Lawson & Austin McTier with Mr. Eric Braun

Overview of Supplemental Instruction

• Specialized Tutors

- Exemplary Performance
- Nominated by Faculty, Director, or Peers

• Three Roles

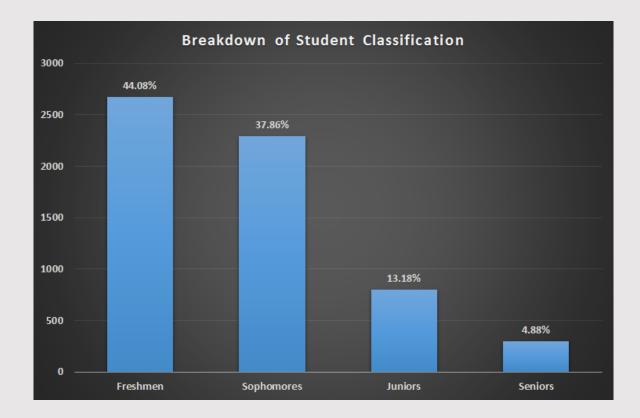
- 1. Model Student
- 2. Session Facilitator
- 3. Collaborator

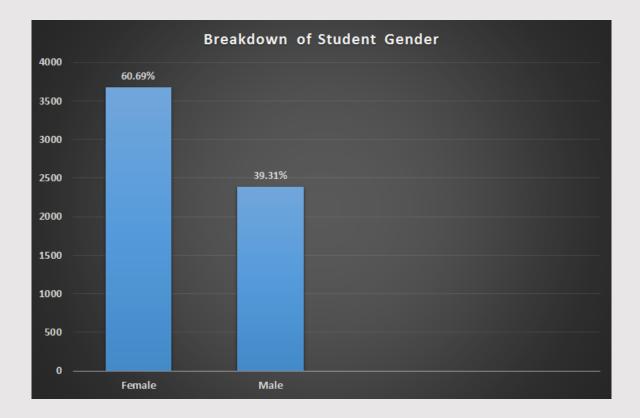
STEM Majors Supported by SI

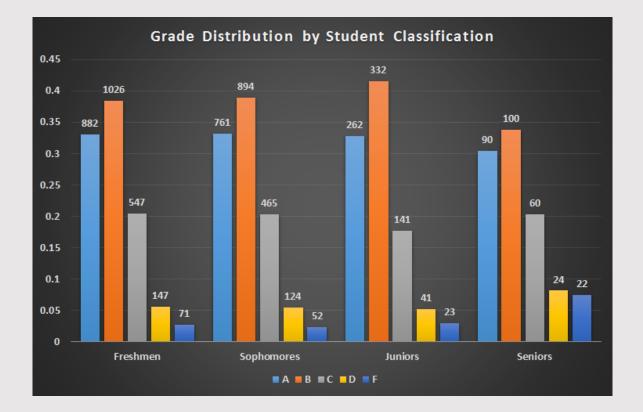
- Environmental Science
- Computer Science
- Psychology
- Chemistry
- Biology
- Physics
- Mathematics
- Management Information Systems (not supported)

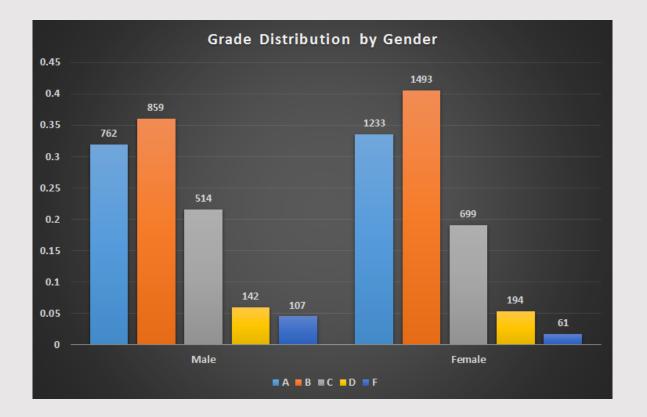
Current Reality (2014-2015 Academic Year)

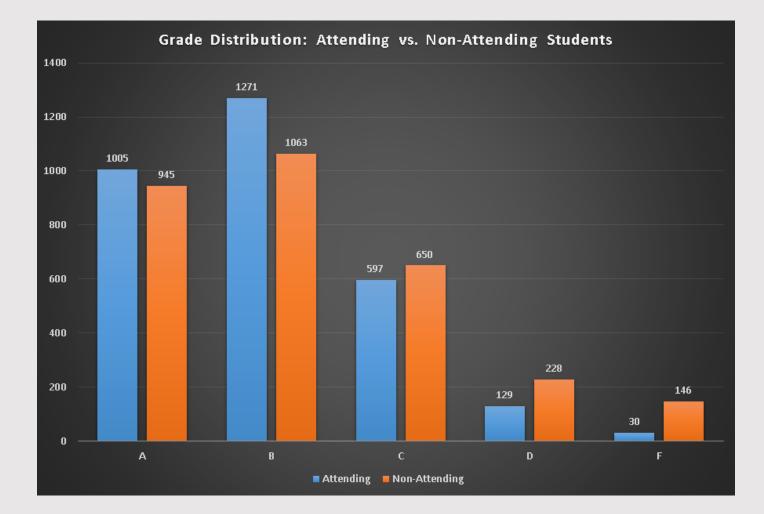
- 72 SI Leaders were employed in the 2014-2015 Academic Year
- 38 courses supported in 13 subject areas
- 124 individual sections supported
- 27% of targeted courses are supported with SI Leaders


Number of Visits	Number of Students	Percent of Students
0	1814	46.4%
1	601	15.4%
2—4	728	18.6%
5—7	347	8.9%
8+	417	10.7%

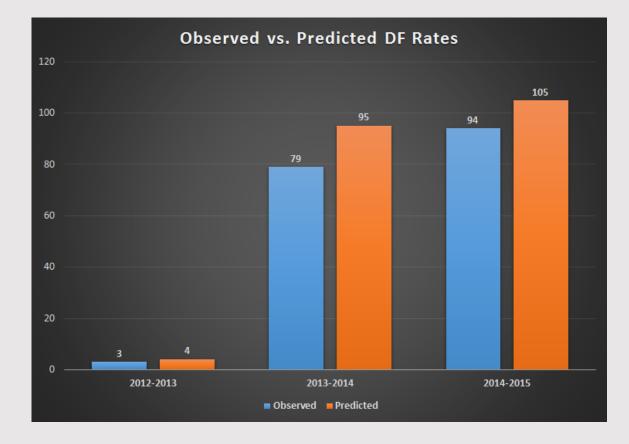

Questions


- 1. How does Supplemental Instruction affect student grades?
- 2. Does participation in Supplemental Instruction have an effect on retention of STEM majors?


Data Processing


- Collected data from the Office of Institutional Research and Effectiveness, the Learning Center, and the United States Census Bureau
- Considered first-time full-time cohorts over the previous three years
- Imputed missing data using the **R** package Amelia to reduce dropped data bias

Propensity Score Analysis


- The goal of this analysis is to be able to take observational data and approach a controlled experiment to assess the treatment outcome.
- Issue: Selection bias prevents assessment of the causal effect of the SI program on grades. We control for the selection bias using Propensity Score Analysis.
- Propensity Score Analysis creates statistical control and treatment populations, which simulates a random experiment and allows for causal inference.

Results

A logistic model was built using the propensity data to predict the DF rates.

Percent Change:

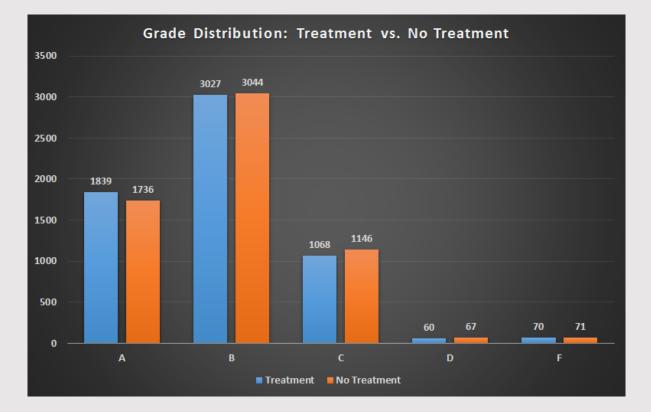
2012-2013: **25.0%** 2013-2014: **16.8%** 2014-2015: **10.5%**

Academic Year 2012-2013 does not include the fall semester.

Ordinal Logistic Model

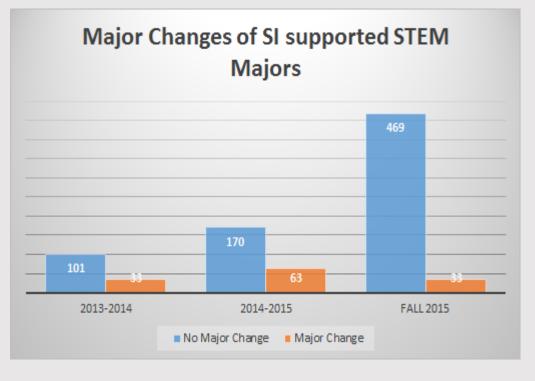
- The ordinal logistic model is used to predict the grade that a student will receive in the course.
- The model produces the marginal probability that a student's grade will change from F to D, D to C, and so on.
- The transition state with the largest probability is therefore the predicted course grade.

Ordinal Logistic Regression Results


Variable	95% Confidence Interval	Mean	Significance
Term Hours Attempted	(0.987, 0.989)	0.988	99%
Cumulative Hours Attempted	(1.029, 1.031)	1.030	99%
Cumulative Institutional GPA	(4.071, 4.104)	4.088	99%
Average Grade for Course Section	(11.223, 11.314)	11.268	99%
High School GPA	(4.513, 4.572)	4.540	99%
SAT Scores (Math and Critical Reading Only)	(1.244, 1.249)	1.246	99%
Grant Recipient (Not Need-Based)	(1.560, 1.579)	1.570	99%
Population of Hometown over 25 w/ Bachelors Degree	(3.307, 3.401)	3.353	99%
Total SI Sessions Attended During the Semester	(1.060, 1.062)	1.061	99%

Coefficients have been exponentiated to yield odds rather than log-odds.

Results


Criteria	Α	DF
With Treatment	1839	130
Without Treatment	1736	138
Percent Change	+6% (103)	6% (8)

Treatment is defined as the student's utilization of Supplemental Instruction.

Survival Model

 Used to predict the likelihood that student in the current term will change their major in the succeeding term

Survival Regression Results

Variable	95% Confidence Interval	Mean	Significance
Term Hours Attempted	(-0.098, -0.088)	-0.093	99%
Cumulative Hours Attempted	(-0.120, -0.196)	-0.198	99%
Cumulative Institutional GPA	(-0.756, -0.724)	-0.740	99%
Total Number of Give Center Hours	(0.003, 0.004)	0.003	99%
Major: Math, Physics, Comp. Sci	(-1.922, -1.862)	-1.891	99%
Major: Environmental Science, Chemistry, Biology	(-2.341, -2.294)	-2.317	99%
Number of Semesters being Grant Recipient (Not Need-Based)	(0.308, 0.322)	0.315	99%
Population of Hometown over 25 w/ Bachelors Degree	(0.286, 0.304)	0.295	99%
SAT Scores (Math Only)	(0.218, 0.246)	0.232	99%
Total SI Visits	(0.018, 0.026)	0.022	99%
Total Number of SIs	(0.145, 0.177)	0.161	99%
(Total SI Visits) * (Total Number of SIs)	(-0.011, -0.008)	-0.009	99%

Fiscal Considerations

- Total SI Costs (FY 2015): \$
 Cost per additional A, B, or C: \$ 5,237
 Cost per grade improvement: \$ 620
- Est. Cost for 100 more improvements: \$ 62,000

Implications and Recommendations

- We see a positive effect of the SI program overall; we wish to investigate individual SI Leaders to identify training needs. Modify surveys to track the performance of SI Leaders.
- We see that the SI program greatly enhances a student's ability to improve their grade, helping 103 more students earn A's and keeping 8 more students from having to repeat the course. Expand the program to more atrisk courses (i.e. courses with a high DF rate).
- We anticipate that the SI program has a positive effect on STEM retention. Have focus groups with students who changed from their STEM majors to clarify the issues that they confront.
- We see that 27% of targeted courses had access to SI. Encourage instructors to utilize SI in their courses.

Further Research

- Consider Ws in our analysis. *This would require a model for persistence in the course.*
- Incorporate information about the individual SI Leaders. *This would allow us to control for variability in SI Leader styles, strengths, etc.*
- Qualitative information (testimonials from students, etc.).
- Consider the effect of a student attending SIs session within their major on their major retention.
- Look at major retention within the STEM field itself, rather than specific major

Acknowledgements

- GC Office of Institutional Research and Effectiveness
- GC Center for Student Success
- GC Office of the Provost and Vice President for Academic Affairs
- USG STEM Development Phase Grant